James River Study 2013

Katherine C. Filippino Margie R. Mulholland March 28, 2014

Sampling sites - 2012

Sampling sites – 2012 & 2013

Whole river =
nutrient pulsing
and
DATAFLOW
cruises

WHRO and CP = Stormwater sites

NYCC and AC = YSI and Daily sampling sites

Sample inventory - 2012

	Chl a	Nuts	Pigment	PN/PC	DIC	Cell	Uptakes	Vertical
						Counts	(N & C)	profiles
JMSTF	5	5	5	5	5	-	5	-
JMSMH	16	16	16	16	16	-	16	-
AC	19	19	19	19	19	-	19	-
Rain event sampling AC	YSI	129	-	-	-	-	-	-
Rain event sampling NYCC	YSI	100	-	-	-	_	-	-
Nutrient pulse cruises	Dataflow	191	-	-	-	-	-	-
Stormwater sampling WHRO	-	8	-	-	-	-	-	-
Stormwater sampling CP	-	5	-	-	-	-	-	-

Sample inventory - 2013

	Chl a	Nuts	Pigment	PN/PC	DIC	Cell	Uptakes	Vertical
						Counts	(N & C)	profiles
AC	53	65	53	53	42	53	20	53 (no chl a)
NYCC	50	80	50	50	42	50	16	50 (no chl a)
Rain event sampling AC	YSI	136	-	-	-	-	-	-
Rain event sampling NYCC	YSI	121	-	-	-	-	-	-
Nutrient pulse cruises – Laf. only	Dataflow	190	-	-	-	-	-	59
Stormwater sampling WHRO	-	9	-	-	-	-	-	-
Stormwater sampling CP	-	5	-	-	-	-	-	-

Continuous monitoring (CONMON)

- YSI's at AC (headwaters) and NYCC (mouth)
- Collecting Temp., salinity, depth, fluorescence,
 pH, turbidity from March October
- Sites for weekly sampling (AC 2012) and daily sampling (AC & NYCC – 2013)
- 2 additional sites proposed in James River in 2014 - HRSD

Nutrient pulse studies

- Combined fixed site monitoring (AC & NYCC) and whole river surface mapping and monitoring before and after rain events
- Nutrients collected 30 minutes and hourly after rain event up to 24 hours at AC & NYCC with ISCOs
- Nutrients collected at 10 surface stations 1 day before and 1 day after rain events along whole river, DATAFLOW in use

Precipitation – 2012 & 2013 comparisons

Chl a & Temp - 2012 & 2013

Chl a vs temp.— 2012 & 2013

AC – Daily sampling 2013

NYCC – Daily sampling – 2013

NOAA/NOS/CO-OPS Winds at 8638595, South Craney Island VA

Vertical profiles – storm event

Before storm 6/6/13 (1100 – 1220) – well mixed water column

After storm 6/8/13 (1720 – 1845) – stratified water column, particularly in headwaters and mainstem

* Interpretation could also be skewed since profiles were taken at mid-day and early evening

Vertical profiles – Chl a variability

- Of the total vertical profiles conducted in 2013 during nutrient pulse cruises, 73% had chl a maximums either at the surface (< 0.5 m) or sub-surface (0.5 1.0 m) layers
- Temporal (diel variability, timing between storm events) and spatial (mouth vs headwaters) variability important
- Indicates a strong need to assess chl *a* with depth in order to gain a representative estimate of its related effects on designated uses.

Diel variability

- Chl *a* and biomass data convoluted with tide, stratification, light, and vertical migration
- Stratified water column at low tide surface chl *a* higher in evening compared to morning
- Mixed water column at flood and ebb tides – surface chl a higher in midmorning compared to evening
- Bulk N (TDN & DON) trends with tide
- DIN trends with biomass

Analyses to date: Rainfall – nutrient – chl *a* relationship

- Wind and rain events likely add nutrients and stimulates Chl production
- Although nutrients can be modulated by tide, only bulk nitrogen (TDN & DON) and P have significant relationship with depth
- DIN concentrations and affects on Chl a are regulated by biology and introduction of nutrients through rain, run-off, and mixing. BUT effects confounded by diel light cycle and tidal mixing/forcing. Timing may be important

- \Small rain event < 0.5 in.
- TDN peaks at 1.5 h and 10 h after rain event
- No major change in Chl a, fluctuates with tide
- N pool dominated by urea and NH₄⁺

- \Medium rain event > 0.8 in.
- TDN peaks at 1.5 h and 12 h after rain event, then levels out
- High Chl a after rain event, coinciding with TDN decrease (6 h), then sharp decline as TDN stays elevated
- N pool dominated by NH₄⁺ and urea, also see decrease with Chl a increase at 6 h

- Large rain event > 1.3 in. in 6 hours
- TDN lowest at 10 h then levels out
- High Chl a after first and second rain event
- Inorganic N and urea depleted in first 3 hours during initial Chl a increase, NH₄⁺ and urea increase (recycled)

- Large rain event > 1 in. in 6 hours
- TDN lowest at 1.5 h then levels out
- Chl a trends with TDN
- N pool dominated by NH₄⁺

^{*} Take home message, all rain events not created equal

Analyses to date: Rainfall – nutrient – chl *a* relationship

- 2012 & 2013 Strong relationship between chl *a* & temp.
- Rain event frequency & duration appear to initiate blooms once temps. are greater than 24°C
- 2012 Whole river and CONMON sampling, captured large-scale nutrient concentrations, but difficult to relate to precipitation events
- 2013 Effects of rainfall on in situ nutrient concentrations and chl *a* are highly variable because of interactive effects between magnitude of inputs, tidal forcing, and biology

Analyses to date: Data gaps

- 2014 Relate diel changes in the vertical distribution of chl a to surface chl a concentrations made Diel variability can be greater than seasonal and/or annual variability
 - Attainable criteria during what part of the solar or tidal cycle? At what depth?
- 2014 Direct assessment of atmospheric deposition (wet only) component not yet quantified; sediment advective flux in response to wind